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Abstract 

We review and discuss different classes of image segmentation methods. The usefulness of these methods is illustrated by a number of clinical cases. 
Segmentation is the process of assigning labels to pixels in 2D images or voxels in 3D images. Typically the effect is that the image is split up into 
segments, also called regions or areas. In medical imaging it is essential for quantification of outlined structures and for 3D visualization of relevant 
image data. Based on the level of implemented model knowledge we have classified these methods into (1) manual delineation, (2) low-level segmen- 
tation, and (3) model-based segmentation. Pure manual delineation of structures in a series of images is time-consuming and user-dependent and 
should therefore be restricted to quick experiments. Low-level segmentation analyzes the image locally at each pixel in the image and is practically 
limited to high-contrast images. Model-based segmentation uses knowledge of object structure such as global shape or semantic context. It typically 
requires an initialization, for example in the form of a rough approximation of the contour to be found. In practice it turns out that the use of 
high-level knowledge, e.g. anatomical knowledge, in the segmentation algorithm is quite complicated. Generally, the number of clinical applications 
decreases with the level and extent of prior knowledge needed by the segmentation algorithm. Most problems of segmentation inaccuracies can 
be overcome by human interaction. Promising segmentation methods for complex images are therefore user-guided and thus semi-automatic. They 
require manual intervention and guidance and consist of fast and accurate refinement techniques to assist the human operator. 
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1. Introduction 

Segmentation is the process of assigning labels to pix- 
els in 2D images or voxels in 3D images. Typically the 
effect is that the image is split up into segments, also 
called regions or areas. Segmentation in medical imag- 
ing is essential for quantification of outlined structures 
and for 3D visualization of relevant image data. 

Methods for image segmentation can be classified 
into two subgroups low-level segmentation and model- 
based segmentation. Low-level segmentation represents 
by far the majority of clinically used methods. They rely 
entirely on image operators that analyze local 
photometry or local shape in the image. Finding bony 
structures in CT images based on homogeneity of the in- 
tensity values is an example. Model-based segmentation 
methods exploit knowledge of object structure such as 
global shape or semantic context. Examples are the de- 
tection of circular lung nodules in X-rays and the use of 
an anatomy atlas for segmentation of MR images of the 
brain. 

*Corresponding author. 

We note that segmentation errors due to an incom- 
plete model are often unavoidable. This is partly due to 
our limited capability of explicitly describing our knowl- 
edge of the structures to be segmented. Furthermore, the 
use of a more complete model may still require 
unrealistically high computational power for clinical 
practice. User interaction may therefore be necessary to 
correct segmentation errors. For some small experi- 
ments it may even be recommended to do the complete 
segmentation task manually. 

We now describe and illustrate different methods for 
image segmentation. Based on the level of implemented 
model knowledge we have classified these methods into 
(1) manual delineation, (2) low-level segmentation and 
(3) model-based segmentation. 

2. Methods and applications 

2.1. Manual delineation 

Pure manual delineation of structures in a series of 
images is time-consuming. However, it may be most 
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suited for quick experiments or measurements on a lim- 
ited number of cases, which otherwise would require im- 
portant modifications to existing segmentation soft- 
ware. As explained below in the section on model-based 
segmentation, manual delineation may also be needed as 
a rough indication of the position of the contour, which 
is then further optimized by the segmentation program. 
As compared to pure manual delineation the spatial 
accuracy of this approximate contour is less important. 

Manual or semi-automatic outlining methods require 
quite sophisticated human-computer interfaces. The 
software must combine the capabilities of drawing pro- 
grams, which are well-known from the area of personal 
computers, and the features of a radiological display 
system. For example, it must be possible to draw and 
modify flexible curves, which are superimposed onto the 
image, as well as to zoom the image during this task. 
Since radiological image data typically consist of many 
image slices with a large range of gray values, options 
must be available for gray value windowing and for 
navigating through the images, such as interactive tine 
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mode. It can then for example be useful to transfer a 
contour that has been drawn on a previous slice. 

Figure la shows a reformatted sagittal slice of a spiral 
CT scan in which the diaphragm was manually outlined. 
Note that the diaphragm is hardly visible near the heart, 
which would increase the complexity of an automatic 
segmentation method. This process was repeated for 
consecutive slices and the resulting surface was 
displayed three dimensionally (Fig. lb). The surface- 
based representation gives insight into the global shape 
of the diaphragm, particularly into the relation between 
the shape at inspiration and expiration. 

Figure 2 shows a gated MR image of the heart obtain- 
ed with cardiac tagging by selectively saturating tissue 
along well-chosen planes. The tags are used to follow 
different points of the heart during the heart cycle for 
further quantification of the left ventricular myocardial 
function. The manual outlining was done by fitting a 
smooth curve through the limited number of points the 
user entered. The use of splines is a widespread method 
for such smoothing. 

b 

Fig. 1. (a) Reformatted sagittal slice of a spiral CT scan with manual delineation of the diaphragm. (b) Surface-based representation of the 
diaphragm obtained from 25 consecutive sagittal CT slices. (Courtesy J. Verschakelen and J. Bogaert). 
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Fig. 2. Gated MR image of the heart obtained with cardiac tagging. (a) Short axis view. (b) Long axis-view corresponding to one of the tag planes 
in part a. (Courtesy J. Bogaert and F. Rademakers). 

2.2. Low-level segmentation 

Low-level segmentation methods rely entirely on 
image operators that analyze the intensity, texture or 
shape locally at each pixel in the image. Since the knowl- 
edge of the structures to be segmented must be expressed 
in terms of local characteristics, it can be expected that 
the performance of low-level segmentation is limited 
and that user interaction is often needed to correct the 
result. 

The simplest method is a threshold operation applied 
to the original gray values of the images. The pixels are 
then labeled as either object or background pixels. This 
method works relatively well for high-contrast images, 
such as CT images of bony structures. In some cases it 
may be necessary to combine the selected object or 
foreground pixels into groups of adjacent points. Figure 
3 shows such an example, obtained from a series of spi- 
ral CT images. It is a shaded representation of the cervi- 
cal vertebrae of a patient with extreme arthrosis of the 
cervical facet joints. Figure 3a is the result of simple 
thresholding, while Fig. 3b was obtained by grouping 
adjacent foreground pixels, starting from a seed pixel 
selected by the user. The same image acquisition, seg- 
mentation and display method was used to obtain the 
image of Fig. 4, which shows a bilateral compression of 
the trachea of a patient with enlarged thyroid gland. 

Combining neighboring pixels with similar local 
characteristics is also called region growing. We note 
that, instead of gray value similarity, other local image 
features, such as texture or the intensity gradient, may 
also be used as the grouping criterion. Grouping of high 
intensity gradients is a possible edge detection method. 
An edge follower or tracker is then used to combine 
edge pixels into long edges, such as contours. However, 
due to the heuristic nature of edge tracking, a suitable 

result cannot be guaranteed and the clinical usefulness 
is therefore limited. 

In practice different regions may touch via one or 
more thin interconnecting branches. Manual interaction 
can simply separate these regions. The number of user 
interventions can strongly be reduced if an opening, i.e. 
an erosion followed by a dilation, is applied. Erosion 
removes spikes from the edges of the regions, while dila- 
tion restores the original size of the regions without the 
spikes. Figures 5 and 6 are examples. Figure 5b is an 
image of the common carotid arteries and their internal 
and external branches, obtained from a spiral CT scan. 
Compare with Fig. 5a, which shows that arteries and 
veins cannot be separated by nonselective thresholding. 
Figure 6 is a surface-based representation of the brain 
obtained from MRI. Note the communication between 
the occipital horn of the lateral ventricular and 
subarachnoidal space. 

The above opening and closing operations are ex- 
amples of binary morphological operations. A more 
complex case of morphological gray value filtering is the 
line detector that we developed for finding blood vessels 
in magnetic resonance angiography (MRA). An angio- 
graphic image is traditionally obtained by a maximum 
intensity projection (MIP) (Fig. 7a). However, small 
blood vessels may be obscured by non-vascular areas of 
high intensity, and ‘black vessels’ are not visible in a 
MIP. ‘Black vessels’ are vessels with turbulent flow 
yielding low signal, such as near a stenosis or an an- 
eurysm or in the feeding artery of an AVM or a tumor. 
They can be detected (Fig. 7b) by the following morpho- 
logical filter. 

(1) A MIP of a cubic environment of a central voxel 
is made in the three main directions. Only the projection 
with the largest mean gray value is retained. In the case 
of a blood vessel this projection is a long-axis view. 
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Fig. 3. (a) Shaded representation of the cervical vertebrae of a patient with extreme arthrosis of the cervical facet joints. segmented by simply 
thresholding a series of 127 spiral CT images of 2 rmn thickness and slice distance of I mm. (b) Same as part a, but obtained by region growing. 

Fig. 4. Shaded representation of a bilateral compression of the trachea 
of a patient with enlarged thyroid gland, segmented by region grow- 

ing. (Courtesy .I. Bogaert and J. Verscbakelen). 

(2) Starting from the central pixel in the projection 
(this is the projection of the central voxel of the 3D envi- 
ronment) the minimal intensity pixel in eight directions 
is searched for. The directions of the two largest of these 
eight minima subdivide the projection plane into two 
halfplanes. In the case of a blood vessel these halfplanes 
correspond to both sides of the vessel trajectory. 

(3) In both halfplanes, the minimal intensity pixel is 
searched for. The largest gray value of both minima is 
finally subtracted from the intensity of the original 
voxel. 

The most important property of this filter is that 2D 
(plane) and 3D (volumetric) structures with high intensi- 
ty are suppressed because they completely fill the projec- 
tion plane of the local MIP. Line structures (ID) on the 
other hand are not affected. The contrast between ves- 
sels and tissue is thus enhanced. Noise pixels are not af- 
fected either. Note that the result of this morphological 
operator is a new gray value image, in which the gray 
values must be considered as a measure of belief that the 
corresponding point belongs to a line like structure. 
More details can be found in [ 1,2]. 

2.3. Model-based segmentation 

Model-based methods use knowledge of object struc- 
ture, such as global shape or semantic context, thus 
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Fig. 5. (a) Shaded representation of arteries and veins segmented by simply thresholding a series of spiral CT images with slice thickness of 5 mm 
and slice distance of 1 mm. (b) Common carotid arteries and their internal and external branches, obtained by region growing and a morphological 

opening operation applied to the same image data as part a. 

distinguishing them from the low-level methods, which 

exploit only local gray value statistics or local shape. 

Knowledge of global shape or semantic context may 

assist the segmentation process in cases of poor resolu- 

Fig. 6. Surface-based representation of the brain obtained from 128 

MR slices by region growing and a morphological opening operation. 

Note the communication between the occipital horn of the lateral ven- 

tricular and subarachnoidal space. 

tion, noise and low contrast. The model instance that 
best fits the image data can then be found by means of 

a mathematical optimization approach. Among the pos- 
sible optimization procedures are dynamic programm- 
ing, solving differential equations, and relaxation. An 
example of each is given below. 

Because of the flexibility of the model, the search may 
become computationally expensive. This optimization 
strategy is therefore practically limited to objects with a 
small number of generic constraints, such as smooth- 
ness, compactness, symmetry and homogeneity. Also, 
the search typically requires an initialization, for exam- 
ple in the form of a rough approximation of the contour 
to be found. This task requires a human-computer inter- 
face similar to the one needed for manual delineation. 

Delineation of the left heart ventricle in SPECT and PET 
images using dynamic programming 

Images of the perfusion (PET, SPECT) or the metab- 
olism (PET) of the left ventricular wall have been used 
for the diagnosis of acute and chronic ischaemic heart 
disease, for the evaluation of therapeutic strategy and 
patient’s prognosis. The gray values are approximately 
proportional to the tracer uptake and are normally 
highest for myocardial voxels. The absence of contrast 
in ischaemic or infarcted regions requires the use of a 
priori global shape knowledge of the left ventricle dur- 
ing segmentation. 

The delineation algorithm is applied to a set of reslic- 
ed radial images through the long axis, which is manual- 

ly specified by the user. Initially, all the radial slices are 
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Fig. 7. (a) Maximum intensity projection (MIP) of original MRA. (b) MIP of filtered MRA with a morphological line detector. Black vessels become 

visible now. 

summed, resulting in an average radial slice that is 
smoother and more uniform than the individual slices. 
A local maxima detector yields candidate center line 
points in this average slice. Using a least squares ap- 
proximation, a piecewise ellipse is then fitted to the 
center line points. With dynamic programming, the en- 
docardium and the epicardium of the left ventricle in all 
the radial slices are then found as smooth curves ap- 
proximately parallel to the piecewise elliptical center 
line. Based on these contours, an improved parametric 

center line is calculated, which is then used in turn to 
find an improved endocardial and epicardial contour. 
The process typically requires two to five iterations. The 
base of the left ventricle is assumed to be planar. The 
delineation is completed by applying an iterative fitting 
algorithm to locate the basal plane. Figure 8a shows the 
result. More details of the delineation method can be 
found in [4,5]. 

From the epicardial and endocardial contour, a polar 
map (Fig. 8b) and corresponding diagnostic parameters 

a b 

Fig. 8. (a) Endocardial and epicardial contours in a radial and axial SPECT slice of a patient injected with the tracer MIBI. (b) Corresponding 

polar map. 
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Fig. 9. Endocardial outline of the left and of the right heart ventricle 
in an MR slice. The contours were roughly indicated manually and 

further improved by the ‘snake’ algorithm. (Courtesy J. Bogaert). 

are then calculated. Particularly, the extent and severity 
of myocardial perfusion defect is calculated by com- 
parison to reference polar maps. The outlined ventricu- 
lar wall can also be used to estimate the mass of the 
myocardial wall, the volume of the cavity, the stroke 
volume in gated studies and to estimate spill-over and 
recovery values. Dynamic series of PET polar maps can 
be analyzed to calculate the absolute value of flow and 
glucose metabolism. 

The method was tested by simulations and by phan- 
tom measurements [5]. It has been successfully applied 
to more than 400 SPECT studies. Manual corrections of 
the delineation or of the position of the basal plane were 
necessary in only 15% of the cases. Most of the delinea- 
tion inaccuracies occurred near infarcted regions close 
to relatively high background activity of the liver or the 
colon. The correct position of the basal plane is 
sometimes hard to define because no sharp edges are 
found near the base, which is probably due to motion of 
the heart. 

Endocardiai delineation in MRI using *snakes’ 
Figure 9 shows the endocardial outline of the left and 

of the right heart ventricle in an MR slice. The contours 
were found by the ‘snake’ algorithm described in [6]. We 
use this method to calculate the enddiastolic and end- 
systolic volumes, ejection fraction and cardiac output 
from a series of consecutive slices. 

The algorithm starts from an initial rough contour ap- 
proximation entered by the user (Fig. 9). The contour is 

a 

b 
Fig. IO. (a) Tl, T2 and p weighted MR image of the brain. (b) Result 
of segmentation. Note the improved performance of the right image as 
compared with the left, which was obtained without taking into ac- 

count anatomical constraints. 

then expanded by the optimization process until it sticks 
in a position of minimum energy. 

The energy is a weighted function of different terms, 
such as the edge strength along the curve, the smooth- 
ness of the curve and the distance of the curve to impor- 
tant interactively defined points. As compared to the 
method of dynamic programming, used in the previous 
example, ‘snakes’ allow to use those global constraints 
whose energy cannot be calculated independently for 
different parts of the curve. For a more detailed com- 
parison we refer to Ref. 7. 

Soft tissue segmentation in MRI using stochastic 
relaxation 

The 3D morphological filter described under ‘low- 
level segmentation’ uses only local properties for blood 
vessel segmentation. Optimization methods are con- 
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siderably slower than local filters but are suited to take 
global model knowledge, such as the continuity of the 
blood vessels, into account. 

If the energy function is defined as the expected num- 
ber of misclassified voxels, global continuity of blood 
vessels can be obtained by stochastic relaxation [ 1,8,9]. 
This optimization procedure iteratively changes the seg- 
mentation result and stochastically reduces the energy 
by eliminating relational inconsistencies, i.e. discon- 
tinuities. 

We have also applied this method to MR brain tissue 
segmentation [8,9]. The algorithm uses a Tl, T2 and p 
weighted image as the input data (Fig. lOa). The 
segmented structures are skin, bone, cerebrospinal fluid, 
gray and white matter. A priori geometric information 
has been used in the form of a number of rules that ex- 
press anatomical incompatibilities between neighboring 
tissue types, e.g. skin must not be adjacent to white mat- 
ter. A typical result is shown in Fig. lob. Note the im- 
proved performance of the right image as compared 
with the left, which was obtained without the anatomi- 
cal constraints. Despite this improvement, the image 
also shows that the result is not yet clinically useful. Fur- 
ther improvements can certainly be obtained by the use 
of a more complete anatomical model, such as a digital 
statistical brain atlas. However, such an atlas does not 
include all the pathological cases and it can therefore be 
expected that the clinical usefulness of this method will 
still be somewhat limited. 

3. Discussion 

We have discussed different applications of manual, 
low-level, and model-based segmentation. Low-level 
methods are popular because of their simplicity and 
speed. They are practically limited, however, to high- 
contrast images. Model-based segmentation methods 
are theoretically more powerful because they are able to 
employ global and semantic knowledge of structures to 
be segmented. They work well when the model can be 
expressed in terms of a few number of global con- 
straints. However, in practice it turns out to be very dif- 
ficult to express semantics such as anatomical 
knowledge in a complete and unambiguous way. For 
such complex models, other strategies may be more ap- 
propriate [7]. For example, if the knowledge about the 
object and its context is extensive and uncertain, 
heuristic procedures may be unavoidable. Solving pro- 
blems by using such a large amount of domain-specific 
knowledge has led to the notion of knowledge systems 
or expert systems. The strategy to build an expert system 
is fundamentally different from optimization. Unlike 
optimization, expert systems reason about symbols ex- 
tracted from the image data. In [lo-121 an expert sys- 
tem is described for the automatic segmentation and 
interpretation of the coronary blood vessels in DSA im- 

ages. However, due to its strong heuristic nature this 
method has limited clinical value. Generally, the number 
of clinical applications reduces with the level and extent 
of prior knowledge used by the segmentation algorithm. 

Most problems of segmentation inaccuracies can be 
overcome by human interaction. Promising segmenta- 
tion methods for complex images are therefore semi- 
automatic. They require manual intervention and 
guidance and consist of fast and accurate refinement 
techniques to complement the human operator. 
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